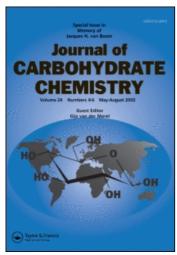
This article was downloaded by:


On: 23 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617200

Efficient Palladium(0)-Catalyzed Synthesis of Alkenyl 1-Thioglycosides and Thiodisaccharides

Anna Zawisza; Boguslaw Kryczka; Paul Lhoste; Stanislaw Porwanski; Denis Sinou

To cite this Article Zawisza, Anna , Kryczka, Boguslaw , Lhoste, Paul , Porwanski, Stanislaw and Sinou, Denis(2000) 'Efficient Palladium(0)-Catalyzed Synthesis of Alkenyl 1-Thioglycosides and Thiodisaccharides', Journal of Carbohydrate Chemistry, 19: 7, 795 — 804

To link to this Article: DOI: 10.1080/07328300008544118 URL: http://dx.doi.org/10.1080/07328300008544118

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

EFFICIENT PALLADIUM(0)-CATALYZED SYNTHESIS OF

ALKENYL 1-THIOGLYCOSIDES AND THIODISACCHARIDES

Anna Zawisza, ab Boguslaw Kryczka, Paul Lhoste, Stanislaw Porwanskia and Denis Sinoub

Received January 10, 2000 - Final Form May 1, 2000

ABSTRACT

Unsaturated thiodisaccharides are obtained in good yields by alkylation of ethyl α -O-glycosides, having a leaving group at C-4, with various thiocarbohydrates in the presence of a catalytic amount of palladium(0). The reaction is regio- and stereospecific for the α -erythro enoside, and only stereospecific in the case of the α -threo enoside, alkylation occurring at C-4 and C-2. In all cases, only the β -anomer is formed.

INTRODUCTION

Current interest in thioglycosides rests in their use in glycoside synthesis, in their biological properties and particularly their increased stability towards enzymatic degradation, as well as their potential values in affinity chromatography. There are several methods to synthesize such compounds from acylated glycosyl halides, acetylated

^a Department of Organic and Applied Chemistry, University of Lodz, ul. Narutowicza 68, 90-136 Lodz, Poland

b Laboratoire de Synthèse Asymétrique, associé au CNRS, CPE Lyon, Université Claude Bernard Lyon 1, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cédex, France e-mail: sinou@univ-lyon1.fr

796 ZAWISZA ET AL.

glycosides or methyl glycosides.² We have recently shown that alkenyl glycosides could be obtained very efficiently and under very mild conditions in the presence of a palladium-catalyst.³ This methodology was extended to the preparation of di- and trisaccharides.⁴

Palladium-catalyzed formation of carbon-sulfur bonds is less common than formation of carbon-oxygen bonds.⁵ However, we⁶ and Moreno-Manas and co-workers⁷ have shown that thiols react cleanly and quantitatively with allylic carbonates in the presence of a catalytic amount of palladium(0) to give the corresponding allylic alkyl sulfides, a breakthrough in the palladium-catalyzed formation of a carbon-sulfur bond. We expected that this new methodology could be used in carbohydrate chemistry in order to prepare alkenyl thiosaccharides and thiodisaccharides, and in this paper we report our recent work in this field.

RESULTS AND DISCUSSION

Reaction of 2,3,4,6-tetra-O-acetyl-1-thio- β -glucopyranose (2) with cinnamyl methyl carbonate (1a) or methallyl methyl carbonate (1b) in the presence of $Pd_2(dba)_3$ [tris(dibenzylidenacetone)dipalladium] and dppb [1,4-bis(diphenylphosphino)butane] in THF at 60 °C gave the corresponding alkenyl 1-thio-D-glucopyranosides 3a and 3b having the β -configuration in 100% and 68% yield, respectively (Eq. 1). The β anomeric configuration was readily derived from the 1H NMR data; we observed for H-1 a doublet with a coupling constant $J_{1,2}=9.6$ and 10.2 Hz, respectively, characteristic for a β configuration.

The reaction of 1-thiosugar 2 with α -D-erythro enoside 1c gave regio- and stereospecifically the thiodisaccharide 3c, arising from the coupling at C-4, albeit in low yield (18%), even after 70 h. The β configuration of the glucopyranose moiety was derived from the ¹H NMR data; we observed for H-1' a doublet at δ 4.73 with a coupling constant $J_{1',2'}=10.2$ Hz. The alkylation at C-4 was confirmed by the upfield shift of H-4 in compound 3c by comparison with its oxygen analog (δ = 3.70 ppm and 4.28 ppm, ^{4b} respectively), and from the upfield shift of C-4 at 39.5 ppm. The overall retention of configuration at C-4, as expected from our precedent stereochemical studies, ^{6a} was also observed from the ¹H NMR data; the coupling constant $J_{4.5}=10.2$ Hz is characteristic for a trans diaxial relationship between H-4 and H-5.

When the α -D-threo enoside 1d was used as the π -allyl precursor, a mixture of the 4-S-alkylated-2,3-unsaturated carbohydrate 3d and its 2-S-alkylated-3,4-unsaturated isomer 3e was obtained with 49% yield in both cases. The structures of these two

compounds were assigned through their ^{1}H and ^{13}C NMR data and their comparison with the data from ethyl 2,3,4-trideoxy-6-O-(tert-butyldimethylsilyl)-4-S-(2-benzothiazolyl)-4-thio- α -D-threo-hex-2-enopyranoside and methyl 2,3,4-trideoxy-6-O-(tert-butyldimethylsilyl)-2-S-(2-benzothiazolyl)-2-thio- α -D-threo-hex-3-enopyranoside. The main characteristic differences between 3d and 3e are the chemical shifts of H-4 and C-4 at δ 3.35 ppm and 43.6 ppm, respectively, for 3d, and H-2 and C-2 at δ 3.36 ppm and 42.4 ppm, respectively, for compound 3e. The observed downfield shift for C-1 in compound 3e (δ = 101.8 ppm) is also characteristic for 3,4-unsaturation. Finally, in compound 3d, the magnitude of $J_{4,5}$ = 3.1 Hz indicated a quasi-equatorial-axial geometry for H-4 and H-5 and is consistent with the threo configuration, while the coupling constant $J_{1,2}$ < 1 Hz for 3e is consistent with an equatorial-quasi-equatorial arrangement of H-1 and H-2.

a $R = (E) - C_6 H_5 C H = C H_2 - C (C H_3) C H_3 - C (C H_3)$

c
$$R = \bigcup_{OEt}^{OSi-t-BuPh_2} \mathbf{d}$$
 $R = \bigcup_{OEt}^{OSi-t-BuPh_2} \mathbf{d}$ $R = \bigcup_{OEt}^{OSi-t-BuPh_2} \mathbf{d}$

Scheme 1

798 ZAWISZA ET AL.

In order to check that this new methodology was not limited to 1-thio carbohydrates, we used methyl 2,3,6-tri-O-benzoyl-4-thio- α -D-galactopyranoside (4) as the nucleophile in this alkylation reaction (Eq. 2). Condensation of 4 with cinnamyl methyl carbonate 1a gave as expected the 4-S-cinnamyl-4-thio-galactopyranoside 5a in 82% yield, although reaction with α -D-erythro enoside 1c gave regio- and stereospecifically the thio-disaccharide 5c in 70% yield. The assignment of the structure was again based on 1 H and 13 C NMR data; the 13 C NMR spectra of the unsaturated moiety of 5c is very similar to that of 3c, and particularly the chemical shifts of C-1 and C-4 at δ 93.5 ppm and 38.8 ppm, respectively. The coupling constants $J_{1',2'} = 4.2$ Hz and $J_{4.5} = 10.2$ Hz are characteristic of a β -configuration and an α -D-threo-hex-2-enopyranose structure, respectively.

Coupling of the α-D-threo enoside 1d and the thiol 4 gave a mixture of the 4-S-alkylated-2,3-unsaturated carbohydrate 5d and its 2-S-alkylated-3,4-unsaturated isomer 5e in 17% and 39% yield, respectively. The structures of these two compounds were again assigned through their ¹H and ¹³C NMR data. Compounds 5d and 5e exhibited chemical shifts for H-4 and C-4 at δ 3.30-3.46 ppm and 39.3 ppm, respectively, for 5d, and H-2 and C-2 at δ 3.61 ppm and 42.9 ppm, respectively, for compound 5e.

This difference in regioselectivity in the palladium-catalyzed alkylation reaction between the α -D-erythro and the α -D-threo enopyranoside can be rationalized as previously suggested. The first step is the formation of the π -allyl complex by oxidative addition to palladium(0), which occurs with inversion of configuration. In the case of the π -allyl palladium species obtained from the erythro compound, the attack of the thiolate occurs only at C-4, the C-2 position being too crowded. Conversely, the position at C-2 of the π -allyl intermediate obtained from the threo compound is less crowded and S-alkylation can occur at this position together with S-alkylation at C-4.

CONCLUSION

In conclusion, we have extended our previously published palladium-catalyzed access to disaccharides to the synthesis of thiodisaccharides. 2,3,4,6-Tetra-O-acetyl-1-thio-β-D-glucopyranose or methyl 2,3,6-tri-O-benzoyl-4-thio-α-D-galactopyranoside reacted with ethyl 6-O-tert-butyldiphenylsilyl-4-O-methoxycarbonyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside in the presence of a catalytic amount of palladium(0) to give regio- and stereospecifically the β-thiodisaccharide, the alkylation occurring at C-4 of the unsaturated carbohydrate. In the case of ethyl 6-O-tert-butyldiphenylsilyl-4-O-methoxy-carbonyl-2,3-dideoxy-α-D-threo-hex-2-enopyranoside, the reaction is stereospecific but

not regiospecific, alkylation occurring at C-2 and C-4 to give the thiodisaccharides having the β-configuration.

EXPERIMENTAL

General methods. All reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica gel plates (60 F-254, Merck). Compounds were visualized under UV light (254 nm) or by spraying with an H₂SO₄ solution and heating. Column chromatography was performed on silica gel 60 (40-63 mesh, Merck). NMR spectra were recorded on Bruker AC 200, AM 300 and AM 500 spectrometers, and chemical shifts are given in ppm on the δ scale from internal tetramethylsilane (H' refers to the saturated moiety of the thiodisaccharide). Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Reactions involving palladium complexes were carried out in a Schlenk tube under a nitrogen atmosphere. THF was distilled from sodium/benzophenone and stored under a nitrogen atmosphere. Pd₂(dba)₃, 1,4-bis(diphenylphosphino)butane and 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranose (2) are from a commercial source. Methyl 2,3,6-tri-*O*-benzoyl-4-thio-α-D-galactopyranoside (4),¹¹ ethyl 6-*O*-tert-butyldiphenylsilyl-4-*O*-methoxycarbonyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (1c),^{4b} and ethyl 6-*O*-tert-butyldiphenylsilyl-4-*O*-methoxycarbonyl-2,3-dideoxy-α-D-threo-hex-2-enopyranoside (1d)^{4b} were prepared according to literature procedures.

General Procedure for Palladium-Catalyzed S-Alkylation Procedure. The catalytic system was prepared by stirring Pd₂(dba)₃ (22.9 mg, 0.025 mmol) and dppb (42.6 mg, 0.1 mmol) in tetrahydrofuran (5 mL) for 1 h in a Schlenk tube under argon. This solution was added under argon to a Schlenk tube containing the unsaturated carbonate (2 mmol) and the thiocarbohydrate (1 mmol) in tetrahydrofuran (5 mL). The solution was stirred at 60 °C and the reaction followed by TLC. After 24 h, the solvent was evaporated under reduced pressure to give an oil that was purified by column chromatography on silica gel to give the thioether.

(E)-Cinnamyl Tetra-O-acetyl-1-thio-β-D-glucopyranoside (3a): yield 100%; mp 112-115 °C; R_f 0.28 (hexane/ethyl acetate 7/3); $[\alpha]_D^{20}$ -74 (c 2.5, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 2.00 (s, 3H, COCH₃), 2.01 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 3.40 (dd, 1H, J = 13.5 and 6.3 Hz, SCH₂), 3.54-3.70 (m, 2H, SCH₂, H-5), 4.12 (dd, 1H, J = 12.2 and 2.2 Hz, H-6), 4.24 (dd, 1H, J = 12.2 and 5.0 Hz, H-6), 4.51 (d, 1H, J = 9.6 Hz, H-1), 5.02-5.26 (m, 3H, H-2, H-3, H-4), 6.10-6.26 (m, 1H, -CH=), 6.49 (d, 1H, J = 15.7 Hz, -CH=), 7.27-7.39 (m, 5H, C₆H₅);

¹³C (75 MHz, CDCl₃) δ 20.7 (2xCH₃), 20.8 (CH₃), 20.8 (CH₃), 32.6 (SCH₂), 62.6 (C-6), 68.8 (C-4), 70.3 (C-2), 74.3 (C-5), 76.2 (C-3), 82.4 (C-1), 125.3, 127.1, 128.6, 129.4 and 133.9 (-CH=, C₆H₅), 137.2 (-CH=), 170.4 (2xCO), 171.3 (CO), 171.6 (CO).

Anal. Calcd for $C_{23}H_{28}O_9S$ (480.53): C, 57.49; H, 5.87; S, 6.67. Found: C, 57.39; H, 5.82; S, 6.29.

Methallyl Tetra-*O*-acetyl-1-thio-β-D-glucopyranoside (3b): yield 68%; mp 50-52 °C; $[\alpha]^{20}_D$ -12 (*c* 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 1.81 (s, 3H, =C-CH₃), 2.01 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.05 (s, 3H, COCH₃), 2.09 (s, 3H, CH₃), 3.12 (d, 1H, J = 13.2 Hz, SCH₂), 3.45 (d, 1H, J = 13.2 Hz, SCH₂), 3.59-3.68 (m, 1H, H-5), 4.12 (dd, 1H, J = 12.2 and 2.0 Hz, H-6), 4.23 (dd, 1H, J = 12.2 and 5.1 Hz, H-6), 4.46 (d, 1H, J = 10.2 Hz, H-1), 4.86 (s, 1H, =CH₂), 4.89 (s, 1H, =CH₂), 5.01-5.28 (m, 3H, H-2, H-3, H-4); ¹³C (75 MHz, CDCl₃) δ 20.4 (2xCH₃), 20.6 (2xCH₃), 37.6 (SCH₂), 62.2 (C-6), 68.4 (C-4), 69.8 (C-2), 73.9 (C-5), 75.7 (C-3), 81.8 (C-1), 114.6 (=CH₂), 140.4 (>C=), 169.4 (2xCO), 170.2 (CO), 170.6 (CO).

Methyl 4-Deoxy-4-S-(E)-cinnamyl-4-thio-2,3,6-tri-O-benzoyl-α-D-galactopyranoside (5a): yield 82%; oil; R_f 0.47 (hexane/ethyl acetate 7/3); $[\alpha]_D^{20}$ -36 (c 0.5, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 3.26 (d, 2H, J = 7.1 Hz, SCH₂), 3.40 (s, 3H, COCH₃), 3.65 (dd, 1H, J = 4.6 Hz, H-4), 4.52 (dd, 1H, J = 10.3 and 4.2 Hz, H-6), 4.61 (m, 1H, H-5), 4.74 (dd, 1H, J = 10.3 and 6.4 Hz, H-6), 5.18 (d, 1H, J = 3.9 Hz, H-1), 5.68 (dd, 1H, J = 10.7 and 3.9 Hz, H-2), 5.88 (dd, 1H, J = 10.7 and 4.6 Hz, H-3), 6.00 (dt, 1H, J = 16.9 and 7.1 Hz, -CH=), 6.15 (d, 1H, J = 16.9 Hz, -CH=), 7.00-8.10 (m, 20H, C_6H_5); ¹³C (75 MHz, CDCl₃) δ 35.5 (SCH₂), 47.3 (C-4), 55.3 (CH₃), 65.1 (C-6), 67.8 (C-5), 70.3 and 70.9 (C-2, C-3), 97.5 (C-1), 124.7, 126.3, 127.6, 128.4, 128.5, 128.6, 129.3, 129.4, 129.6, 129.7, 129.8, 133.1, 133.2, 133.4 and 133.5 (-CH=, C_6H_5), 136.1 (-CH=), 165.8 (CO), 165.9 (CO), 166.1 (CO).

Anal. Calcd for $C_{37}H_{34}O_8S$ (638.74): C, 69.57; H, 5.37; S, 5.02. Found: C, 69.40; H, 5.27; S, 4.83.

Ethyl 6-*O-tert*-Butyldiphenylsilyl-4-*S*-(2,3,4,6-tetra-*O*-acetyl-1-β-D-glucopyranosyl)-4-thio-2,3,4-trideoxy-α-D-*erythro*-hex-2-enopyranoside (3c): yield 18%; oil; R_f 0.5 (hexane/ethyl acetate 1/1); $[\alpha]_D^{20}$ +36 (c 0.1, CHCl₃); 1 H NMR (500 MHz, CDCl₃) δ 1.07 (s, 9H, CMe₃), 1.22 (t, 3H, J = 7.1 Hz, CH₂CH₃), 1.96 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.20 (s, 3H, COCH₃), 3.56 (dq, 1H, J = 9.6 and 7.1 Hz, CH₂CH₃), 3.62 (ddd, 1H, J = 9.9, 4.6 and 2.0 Hz, H-5'), 3.70 (bd, 1H, J = 10.2 Hz, H-4), 3.84 (dq, 1H, J = 9.6 and 7.1 Hz, CH₂CH₃), 4.00 (m, 2H, H-6, H-6'), 4.07 (m, 2H, H-5, H-6), 4.24 (dd, 1H, J = 12.5 and 4.6 Hz, H-6'), 4.73 (d, 1H, J = 10.2 Hz, H-1'), 4.99 (dd, 1H, J = 10.2 and 9.3 Hz, H-2'), 5.07

(bs, 1H, H-1), 5.09 (dd, 1H, J = 9.9 and 9.3 Hz, H-4'), 5.21 (dd, 1H, J = 9.3 and 9.3 Hz, H-3'), 5.94 (m, 2H, H-2, H-3), 7.39-7.46 (m, 6H, C_6H_5), 7.74-7.77 (m, 4H, C_6H_5); ¹³C (75 MHz, CDCl₃) & 15.3 (CH₂CH₃), 19.4 (CMe₃), 20.6 (2xCH₃), 20.7 (2xCH₃), 26.8 (CMe₃), 39.5 (C-4), 61.8 (C-6'), 63.5 (C-6), 63.6 (CH₂CH₃), 68.0 (C-4'), 70.1 (C-2'), 71.7 (C-5), 74.0 (C-3'), 75.5 (C-5'), 82.6 (C-1'), 93.7 (C-1), 128.7 (C-2), 131.3 (C-3), 127.7, 127.8, 129.7, 133.2, 133.7, 135.6 and 135.9 (C_6H_5), 169.3 (CO), 169.4 (CO), 170.2 (CO), 170.6 (CO).

Anal. Calcd for $C_{38}H_{50}O_{12}SSi$ (758.96): C, 60.14; H, 6.64; S, 4.22. Found: C, 60.09; H, 6.62; S, 3.77.

Ethyl 6-O-tert-Butyldiphenylsilyl-4-S-(2,3,4,6-tetra-O-acetyl-1β-D-glucopyranosyl)-4-thio-2,3,4-trideoxy-α-D-threo-hex-2-enopyranoside (3d): yield 49%; oil; $R_{\rm f}$ 0.19 (hexane/ethyl acetate 7/3); $[\alpha]^{20}$ -99 (c 1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, CMe₃), 1.25 (t, 3H, J = 7.3 Hz, CH₂CH₃), 1.69 (s, 3H, COCH₃), 2.00 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 3.35 (ddd, 1H, J = 5.1, 3.1 and 1.2 Hz, H-4), 3.49 (ddd, 1H, J = 9.7, 5.5 and 2.4 Hz, H-5'),3.55 (dq, 1H, J = 9.7 and 7.3 Hz, CH_2CH_3), 3.90 (m, 2H, H-6), 4.04 (dd, 1H, J = 12.2and 2.4 Hz, H-6'), 3.92 (dq, 1H, J = 9.7 and 7.3 Hz, CH_2CH_3), 4.15 (dd, 1H, J = 12.2and 5.5 Hz, H-6'), 4.46 (ddd, 1H, J = 6.1, 3.1 and 3.1 Hz, H-5), 4.83 (d, 1H, J = 10.4Hz, H-1'), 4.93 (dd, 1H, J = 10.4 and 9.1 Hz, H-2'), 5.02 (dd, 1H, J = 9.7 and 9.7 Hz, H-4'), 5.07 (d, 1H, J = 3.0 Hz, H-1), 5.17 (dd, 1H, J = 9.7 and 9.1 Hz, H-3'), 5.88 (ddd, 1H, J = 9.8, 3.0 and 1.2 Hz, H-2), 6.24 (dd, 1H, J = 9.8 and 5.1 Hz, H-3), 7.40-7.47 (m, 6H, C_6H_5), 7.68-7.72 (m, 4H, C_6H_5); ¹³C (50 MHz, CD₃OD) δ 15.6 (CH₂CH₃), 19.8 (CMe₃), 20.4 (CH₃), 20.5 (2xCH₃), 20.7 (CH₃), 27.2 (CMe₃), 40.9 (C-4), 63.1 (C-6'), 64.2 (CH₂CH₃), 66.3 (C-6), 69.6 (C-4'), 71.4 (C-2'), 72.0 (C-5), 75.2 (C-3'), 76.6 (C-5'), 83.7 (C-1'), 95.4 (C-1), 127.1 (C-2), 131.3 (C-3), 128.8, 128.9, 130.9, 134.3, 134.4, 136.5 and 136.6 (C₆H₆), 170.7 (CO), 171.0 (CO), 171.3 (CO), 171.9 (CO).

Anal. Calcd for $C_{38}H_{50}O_{12}SSi$ (758.96): C, 60.14; H, 6.64; S, 4.22. Found: C, 60.18; H, 6.59; S, 3.83.

Ethyl 6-*O*-tert-Butyldiphenylsilyl-2-S-(2,3,4,6-tetra-*O*-acetyl-1-β-D-glucopyranosyl)-2-thio-2,3,4-trideoxy-α-D-threo-hex-3-enopyranoside (3e): yield 49%; oil; $R_{\rm f}$ 0.34 (hexane/ethyl acetate 7/3); $[\alpha]^{20}_{\rm D}$ +6 (c 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.09 (s, 9H, CMe₃), 1.25 (t, 3H, J = 7.3 Hz, CH₂CH₃), 2.03 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 2.06 (s, 6H, 2 x COCH₃), 3.36 (ddd, 1H, J = 4.3, 1.8 and 1.8 Hz, H-2), 3.55 (dq, 1H, J = 9.7 and 7.3 Hz, CH₂CH₃), 3.59 (ddd, 1H, J = 10.4, 4.9 and 1.8 Hz, H-5'), 3.65 (dd, 1H, J = 10.0 and 7.0 Hz, H-6), 3.75 (dq, 1H, J = 9.7 and 7.3 Hz, CH₂CH₃), 3.81 (dd, 1H, J = 10.0 and 5.8 Hz, H-6), 4.08 (dd,

1H, J = 12.2 and 1.8 Hz, H-6'), 4.23 (dd, 1H, J = 12.2 and 4.9 Hz, H-6'), 4.23 (m, 1H, H-5), 4.55 (d, 1H, J = 10.1 Hz, H-1'), 5.06 (dd, 1H, J = 10.1 and 9.2 Hz, H-2'), 5.08 (dd, 1H, J = 9.8 and 9.8 Hz, H-4'), 5.13 (bs, 1H, H-1), 5.21 (dd, 1H, J = 9.8 and 9.2 Hz, H-3'), 5.72 (ddd, 1H, J = 10.4, 4.3 and 1.8 Hz, H-3), 6.05 (bd, 1H, J = 10.4 Hz, H-4), 7.40-7.49 (m, 6H, C₆H₅), 7.69-7.70 (m, 4H, C₆H₅); ¹³C (50 MHz, CD₃OD) δ 15.6 (CH₂CH₃), 20.0 (CMe₃), 20.6 (2xCH₃), 20.8 (2xCH₃), 27.4 (CMe₃), 42.4 (C-2), 63.1 (C-6'), 64.5 (CH₂CH₃), 67.2 (C-6), 69.2 and 69.6 (C-4', C-5), 70.7 (C-2'), 75.1 (C-3'), 76.9 (C-5'), 83.0 (C-1'), 101.8 (C-1), 124.3 (C-3), 134.3 (C-4), 128.8, 129.9, 130.9 and 136.7 (C₆H₅), 170.9 (CO), 171.0 (CO), 171.4 (CO), 172.0 (CO).

Anal. Calcd for $C_{38}H_{50}O_{12}SSi$ (758.96): C, 60.14; H, 6.64; S, 4.22. Found: C, 60.24; H, 6.62; S, 3.54.

Ethyl 6-*O-tert*-Butyldiphenylsilyl-4-*S*- (methyl 2,3,6-tri-*O*-benzoyl-α-D-galactopyranos-4-yl)-4-thio-2,3,4-trideoxy-α-D-*erythro*-hex-2-enopyranoside (5c): yield 70%; yellow solid; mp 76-78 °C; R_f 0.42 (hexane/ethyl acetate 4/1); $[\alpha]^{20}_D$ +67 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.00 (s, 9H, CMe₃), 1.12 (t, 3H, J = 7.0 Hz, CH₂CH₃), 3.38 (s, 3H, OCH₃), 3.30-3.40 (m, 1H, CH₂CH₃), 3.45-3.65 (m, 4H, CH₂CH₃, H-5, H-6, H-4'), 3.69 (bd, 1H, J = 9.2 Hz, H-4), 4.07 (dd, 1H, J = 11.4 and 2.9 Hz, H-6), 4.28 (dd, 1H, J = 11.4 and 3.7 Hz, H-6'), 4.50 (m, 1H, H-5'), 4.70 (dd, 1H, J = 11.4 and 7.7 Hz, H-6'), 4.84 (bs, 1H, H-1), 5.18 (d, 1H, J = 3.7 Hz, H-1'), 5.55 (dd, 1H, J = 10.7 and 3.7 Hz, H-2'), 5.67 (ddd, 1H, J = 10.0, 2.7 and 2.7 Hz, H-2), 5.93 (dd, 1H, J = 10.7 and 4.0 Hz, H-3'), 6.00 (bd, 1H, J = 10.0 Hz, H-3), 7.13-8.08 (m, 25H, C₆H₅); ¹³C (75 MHz, CDCl₃) δ 15.2 (CH₂CH₃), 19.3 (CMe₃), 26.9 (CMe₃), 38.8 (C-4), 48.6 (C-4'), 55.3 (OCH₃), 63.5 (C-6, CH₂CH₃), 65.3 (C-6'), 58.1 (C-5'), 70.4 and 70.5 (C-2', C-3'), 71.5 (C-5), 93.5 (C-1), 97.4 (C-1'), 127.5 and 131.8 (C-2, C-3), 127.8, 128.3, 128.4, 128.5, 129.1, 129.4, 129.6, 129.7, 129.8, 133.2, 133.3, 133.6, 135.8 and 135.9 (C₆H₅), 165.8 (CO), 166.0 (CO), 166.1 (CO).

Anal. Calcd for $C_{52}H_{56}O_{11}SSi$ (917.16): C, 68.10; H, 6.15; S, 3.50. Found: C, 67.60; H, 6.12; S, 3.50.

Ethyl 6-*O*-tert-Butyldipnenyisilyi-4-*S*-(methyl 2,3,6-tri-*O*-benzoyl- α -D-galactopyranos-4-yl)-4-thio-2,3,4-trideoxy- α -D-threo-hex-2-enopyranoside (5d): yield 17%; oil; R_f 0.44 (hexane/ethyl acetate 4/1); $[\alpha]_D^{20}$ -44 (c 0.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.05 (s, 9H, CMe₃), 1.10 (t, 3H, J = 6.6 Hz, CH₂CH₃), 3.30-3.46 (m, 2H, H-4, CH₂CH₃), 3.36 (s, 3H, OCH₃), 3.65-3.76 (m, 2H, H-4', CH₂CH₃), 3.91 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 4.02 (dd, 1H, J = 10.3 and 6.6 Hz, H-6), 4.19 (ddd, 1H, J = 6.6, 5.9 and 2.2 Hz, H-5), 4.51-4.68 (m, 3H, H-5', H-6'), 4.90 (d, 1H, J = 2.2 Hz, H-1), 5.17 (d, 1H, J = 3.7 Hz, H-1'), 5.54 (bd, 1H, J = 10.3 Hz, H-2), 5.58 (dd, 1H, J = 11.0 and 3.7 Hz, H-2'), 5.17 (bd, 1H, J = 10.3 Hz, H-3),

5.81 (dd, 1H, J = 11.0 and 4.4 Hz, H-3'), 7.30-8.10 (m, 25H, C_6H_5); ¹³C (75 MHz, CDCl₃) δ 15.2 (CH₂CH₃), 19.2 (CMe₃), 26.8 (CMe₃), 39.3 (C-4), 46.3 (C-4'), 55.3 (OCH₃), 63.3 (CH₂CH₃), 64.2 (C-6), 65.5 (C-6'), 69.2 (C-5'), 70.0 (C-2'), 70.4 (C-3'), 70.7 (C-5), 94.2 (C-1), 97.4 (C-1'), 127.5 and 129.1 (C-2, C-3), 127.7, 127.8, 128.4, 128.7, 129.5, 129.7, 129.8, 130.1, 133.1, 133.2, 133.5, 135.6 and 135.7 (C_6H_5), 166.0 (CO), 166.1 (CO).

Anal. Calcd for $C_{52}H_{56}O_{11}SSi$ (917.16): C, 68.10; H, 6.15; S, 3.50. Found: C, 68.12; H, 6.20; S, 3.21.

Ethyl 6-O-tert-Butyldiphenylsilyl-2-S-(methyl 2,3,6-tri-O-benzoylα-D-galactopyranos-4-yl)-2-thio-2,3,4-trideoxy-α-D-threo-hex-3-enopyranoside (5e): yield 39%; white solid; mp 71-73 °C; R, 0.53 (hexane/ethyl acetate 4/1); $[\alpha]^{20}_{p}$ +62 (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H, J=6.6 Hz, CH_2CH_3), 1.07 (s, 9H, CMe_3), 2.73 (dq, 1H, J = 9.6 and 6.6 Hz, CH_2CH_3), 3.08 (bs, 1H, H-2), 3.42 (s, 3H, OCH₃), 3.57 (dd, 1H, J = 10.3 and 7.3 Hz, H-6), 3.61 (m, 1H, H-4'), 3.75 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 and 5.9 Hz, H-6), 3.90 (m, 1H, H-5), 4.43 (dd, 1H, J = 10.3 (dd, 1H, J = 10.11.0 and 3.7 Hz, H-6'), 4.53 (m, 1H, H-5'), 4.67 (dd, 1H, J = 11.0 and 7.3 Hz, H-6'), 4.78 (s, 1H, H-1), 5.15 (d, 1H, J = 3.7 Hz, H-1'), 5.58 (dd, 1H, J = 10.3 and 3.7 Hz, H-2'), 5.66 (dm, 1H, J = 10.4 Hz, H-3), 5.91 (bd, 1H, J = 10.4 Hz, H-4), 5.96 (dd, 1H, J = 10.3 and 3.7 Hz, H-3'), 7.30-8.10 (m, 25H, C₆H₅); ¹³C (75 MHz, CDCl₃) δ 15.0 (CH₂CH₃), 19.3 (CMe₃), 27.0 (CMe₃), 42.9 (C-2), 46.8 (C-4'), 55.3 (OCH₃), 62.8 (CH,CH₃), 65.5 (C-6'), 65.9 (C-6), 68.0 and 68.1 (C-5, C-5'), 69.3 (C-3'), 70.5 (C-2'), 97.5 (C-1'), 100.8 (C-1), 123.1, 127.8, 128.3, 128.4, 128.5, 129.5, 129.6, 129.7, 129.8, 129.9, 130.3, 132.8, 133.2, 133.5, 135.7 and 135.8 (C-3, C-4, C₆H₅), 165.7 (CO), 166.1 (CO), 166.2 (CO).

Anal. Calcd for $C_{52}H_{56}O_{11}SSi$ (917.16): C, 68.10; H, 6.15; S, 3.50. Found: C, 68.16; H, 6.03; S, 3.35.

ACKNOWLEDGMENTS

One of us (A. Z.) thanks the "Région Rhône Alpes" for a fellowship.

REFERENCES

a) R. R. Schmidt, in B. M. Trost and J. Fleming (Eds.), Comprehensive Organic Synthesis, Vol. 6, Pergamon Press, New York, 1991, p 33.
 b) R. R. Schmidt, Pure Appl. Chem., 61, 1257 (1989).

- c) P. Sinay, Pure Appl. Chem., 63, 519 (1991).
- d) H. Paulsen, Chem. Soc. Rev., 13, 15 (1984).
- 2. a) D. Horton and D. H. Hutson, Adv. Carbohydr. Chem., 18, 123 (1963).
 - b) R. J. Ferrier and R. H. Furneaux, Methods Carbohydr. Chem., 8, 251 (1980).
 - c) P. J. Garegg, Adv. Carbohydr. Chem., 52, 179 (1997).
- 3. R. Lakhmiri, P. Lhoste, B. Kryczka and D. Sinou, J. Carbohydr. Chem., 12, 223 (1993).
- 4. a) D. Sinou, I. Frappa, P. Lhoste, S. Porwanski and B. Kryczka, *Tetrahedron Lett.*, 36, 1251 (1995).
 - b) I. Frappa, B. Kryczka, P. Lhoste, S. Porwanski and D. Sinou, J. Carbohydr. Chem., 16, 891 (1997).
 - c) I. Frappa, B. Kryczka, P. Lhoste, S. Porwanski, D. Sinou and A. Zawisza, J. Carbohydr. Chem., 17, 1117 (1998).
- 5. a) P. R. Auburn, J. Whelan and B. Bosnich, J. Chem. Soc., Chem. Commun., 146 (1986).
 - b) B. M. Trost and T. S. Scalan, Tetrahedron Lett., 27, 4141 (1986).
 - c) M. Frank and H. -J. Gais, Tetrahedron: Asymmetry, 9, 3353 (1998).
- 6. a) C. Goux, P. Lhoste and D. Sinou, Tetrahedron, 50, 10321 (1994).
 - b) C. Goux, P. Lhoste, D. Sinou and J. Muzart, Sulfur Letters, 18, 1 (1994).
 - c) S. Divekar, M. Safi, M. Soufiaoui and D. Sinou, Tetrahedron, 55, 4369 (1999).
 - d) D. Sinou, S. Divekar, M. Safi and M. Soufiaoui, Sulfur Letters, 22, 125 (1999).
- a) M. Moreno-Mañas, R. Pleixats and M. Villarroya, Tetrahedron, 49, 1457 (1993).
 b) Y. Arredondo, M. Moreno-Mañas, R. Pleixats and M. Villarroya, Tetrahedron, 49, 1465 (1993).
- 8. P. Li, L. Sun, D. W. Landry and K. Zhao, Carbohydr. Res., 275, 179 (1995).
- S. Valverde, M. Bernabe, S. Garcia-Ochoa and A. Gomez, J. Org. Chem., 55, 2294 (1990).
- 10. H. H. Baer and Z. S. Hanna, Can. J. Chem., 51, 889 (1981).
- O. Varela, D. Cicero and R. M. de Lederkremer, J. Org. Chem., 54, 1884 (1989).